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Abstract. Spin-dependent Floquet scattering theory is developed to investigate the photon-assisted spin-
polarized electron transport through a semiconductor heterostructure in the presence of an external electric
field. Spin-dependent Fano resonances and spin-polarized electron transport through a laser irradiated
time-periodic non-magnetic heterostructure in the presence of Dresselhaus spin-orbit interaction and a
gate-controlled Rashba spin-orbit interaction are investigated. The electric field due to laser along with
the spin-orbit interactions help to get spin-dependent Fano resonances in the conductance, whereas the
external bias can be appropriately adjusted to get a near 80% spin-polarized electron transmission through
heterostructures. The resultant nature of the Floquet scattering depends on the relative strength of these
two electric fields.

PACS. 85.75.Mm Spin polarized resonant tunnel junctions – 72.20.-i Conductivity phenomena in semi-
conductors and insulators – 73.40.Gk Tunneling – 73.63.Hs Quantum wells

1 Introduction

Spin polarized transport of electrons in time-periodic
mesoscopic systems is a subject of increasing technologi-
cal importance in the growing field of spintronics. Photon-
assisted transport has been observed in quantum resonant
tunneling structures [1] such as quantum dots [2,3], and
superlattices [4]. Quantum interference between a bound
state and the continuum of band in time-periodic meso-
scopic system leads to Fano-type resonances. First tun-
able Fano resonances were observed experimentally [5] in
a mesoscopic system, realized in an Aharonov-Bohm ring
with a quantum dot embedded in one of its arms. Re-
cently, Fano-type resonances due to the interaction of elec-
tron states with opposite spin orientation in Datta and
Das spin modulators were reported [6] and the splitting
of Fano resonances due to Dresselhaus spin-orbit inter-
action was investigated [7]. Understanding this type of
spin-dependent phenomenon may find applications in de-
signing high-speed switching spintronic devices and high-
frequency radiation sources and detectors.

In the present work we generalize the model given in
reference [7] to investigate the spin dependent Fano res-
onances and spin-polarized electron transport through a
dynamically driven heterostructure due to laser irradia-
tion in the presence of a gate-controlled spin-orbit inter-
action. Gate-controlled spin degree of freedom is of great
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importance in the prospects of technological applications
of spintronics [8–10]. Gate-controlled Rashba spin-orbit
interaction was recently demonstrated experimentally for
both electrons and holes in various materials [11–14]. We
consider the interferometer geometry which is realized by
a laser irradiated quantum well in non-magnetic semi-
conductor heterostructure. Along with the Dresselhaus
spin-orbit interaction, a gate-controlled Rashba spin-orbit
interaction is also included in our investigation of spin-
dependent Fano resonances and spin-polarized electron
transport through such a heterostructure. In our geom-
etry, laser is irradiated such that the electric field due
to laser and the externally applied electric field which is
used to tune the Rashba spin-orbit interaction are mutu-
ally perpendicular to each other. The resultant nature of
the Floquet scattering depends on the relative strength of
these two electric fields. The electric field due to laser helps
to get Fano-type resonances in the conductance, whereas
the external bias can be appropriately adjusted to get
a near 80% spin-polarized electron transmission through
heterostructures. The same model can be used for the
case where the two electric fields are parallel and along
the growth direction by dividing the time-periodic region
into many smaller regions such that the electric potential
due laser is constant but different in every such smaller
regions.

In Section 2 we elaborate the model which is used to
investigate the Fano resonances and spin-polarized trans-
port of electrons through a time-periodic heterostructure
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in the presence of a gate-controlled spin-orbit interaction.
In Section 3 we study the behavior of Fano resonances,
spin dependent transmission probabilities, spin polariza-
tion, and spin polarized conductance in a laser irradiated
quantum well of GaSb, sandwiched between the layers of
InP heterostructure, in the presence of Dresselhaus spin-
orbit interaction and a gate-controlled Rashba spin-orbit
interaction. In Section 4 we make some concluding re-
marks.

2 Model and formalism

We consider the spin-dependent transmission of an elec-
tron with incident wave vector �k = (k‖ cosφ, k‖ sin φ, kz),
φ is the angle of the wave vector �k in the xy plane,
through a laser-irradiated quantum well of InP-GaSb-InP
3-layer non-magnetic semiconductor heterostructure with
z || [001] as the growth axis. The electron motion through
such a heterostructure in the presence of external electric
field, �F , applied along the growth axis is described by the
Schrödinger equation:

i�
∂

∂t
Ψσ(�r, t) = ĤΨσ(�r, t) (1)

with

Ĥσ = − �
2

2µ

∂2

∂z2
+

�
2k2

‖
2µ

+V (z, t)+HD−eF (z−z1)−σαk‖.

(2)
The potential profile of a harmonically driven heterostruc-
ture due to laser field is described by

V (z, t) =
{−V0 + V1 cosωt, 0 ≤ z ≤ L

0, z < 0 and z > L.
(3)

Here V0 is the depth of the quantum well with width L
and which can be harmonically tuned by laser irradiation,
as shown in Figure 1. We assume that the quantum well
layer is irradiated by laser, such that the potential gen-
erated by laser is eFlx cosωt. Here eFlx is taken as V1

with Fl, the magnitude of the electric field due to laser.
HD is the spin-dependent k3 Dresselhaus term that de-
scribes the spin-orbit interaction of the semiconductors
with zinc-blende lattice structure. For the incident elec-
tron with kinetic energy much smaller than the well depth
V0 the Dresselhaus term HD may be simplified to [15]

HD = γ(σxkx − σyky)
∂2

∂z2
(4)

where γ is the material constant describing the strength
of the spin-orbit interaction and σx and σy are the Pauli
spin matrices The last two terms in equation (2) are due
to external electric field, the last term is the electric field
induced Rashba spin-orbit interaction with σ = ±1 cor-
responds to spin up and spin down respectively and α as
the electric field dependent Rashba spin-orbit interaction
parameter derived using eight-band k ·p Kane model [16]:

α =
�

2

2µ

∆

Eg

2Eg + ∆

(Eg + ∆)(3Eg + 2∆)
eF. (5)

Fig. 1. Potential profile of the non-magnetic semiconductor,
InP–GaSb–InP, heterostructure in the presence of laser propa-
gation and the external electric field both along the growth axis
(Z-axis). Potential due to laser is V1 cos ωt, where V1 = eFlx,
which is constant along z-axis.

Here µ is the effective mass of the electron. Eg and ∆
are the main band gap and the spin-orbit splitting, re-
spectively. F is the strength of the external electric field.
We use a single-electron model at low enough tempera-
tures such that the electron-electron interactions and the
electron-phonon interactions can be neglected.

On diagonalizing the Dresselhaus term given in
equation (4) by the spinors

χσ =
1√
2

(
1

−σe−iφ

)
(6)

which describe the electron spin states with σ = ±1 cor-
responding to spin up and spin down states respectively.
Here φ is the angle of the wave vector �k in the xy plane,
�k‖ = (k‖ cosφ, k‖ sinφ). One can see that the Dresselhaus
spin-orbit interaction modifies the effective mass of the
electron as a spin dependent term as given by [17]

µσ = µ

(
1 +

2σγµk‖
�2

)−1

. (7)

Thus the spin dependent Hamiltonian is given by

Ĥσ = − �
2

2µσ

∂2

∂z2
+

�
2k2

‖
2µ

+V (z, t)−eF (z−z0)−σαk‖. (8)

2.1 Floquet scattering

The spin-dependent photon-assisted electron transmission
through a heterostructure with external bias is described
by the Schrödinger equation

i�
∂

∂t
Ψσ(�r, t) = ĤσΨσ(�r, t) (9)

with
Ψσ(�r, t) = χσΦσ(z, t)ei�k‖·�p (10)

where �p = (x, y) is the in-plane vector. Since the poten-
tial is time-periodic inside the quantum well, the Floquet
theorem [18–20] gives the scattering states

ΨF
σ (�r, t) = χσΦσ(z, t)e−

iEσ
F t

� ei�k‖·�p (11)
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where EF is the Floquet eigenenergy and φσ(z, t) is a
time periodic function: φσ(z, t) = φσ(z, t + T ), with pe-
riod T = 2π/ω. Using equations (10) and (11) along with
φσ(z, t) = gσ(z)fσ(t), equation (9) separates into follow-
ing equations:

− �
2

2µσ

d2

dz2
gσ(z) =

(
Eσ + V0 −

�
2k2

‖
2µ

+ eF (z − z0) + σαk‖

)
gσ(z), (12)

i�
d

dt
fσ(t) − V1 cosωtfσ(t) = (Eσ − Eσ

F )fσ(t), (13)

where Eσ is a constant. On integrating equation (13), we
get

fσ(t) = e−i(Eσ−Eσ
F )t/� exp

[
− i

�

∫ t

0

V1 cosωτdτ

]

= e−i(Eσ−Eσ
F )t/�

∞∑
n=−∞

Jn

(
V1

�ω

)
e−inωt (14)

with initial condition fσ(0) = 1. Jn(x) is the nth order
Bessel function of the first kind. Since fσ(t) is periodic,
equation (14) requires that Eσ = Eσ

m = Eσ
F +m�ω, where

m is an integer.
Since electrons transmitting through the time-periodic

region (region II in Fig. 1) will be scattered inelasti-
cally into Floquet sidebands with spacing �ω of energy
Eσ

m = Eσ
F + m�ω (m is the sideband index), the solution

of equation (12) has a form

gσ(z) =
∞∑

m=−∞
{amσAi [Zmσ(z)] + bmσBi [Zmσ(z)]}

(15)
where {amσ, bmσ} are constant coefficients. Ai [Zmσ(z)]
and Bi [Zmσ(z)] are Airy functions with

Zmσ(z) =
[
2eµσ/F/

�2

] 1
3

[
Amσ(Ez) − zeF

e/F/

]

and

Amσ(Ez)=
�

2k2
‖

2µ

(
1− µ

µ1

)
−V0−Ez −m�ω−σαk‖ +z1eF

(16)
where µ1 is the effective mass of an electron in region I.
Thus the Floquet states in the time-periodic region can
be expressed as

Ψ II
σ (�ρ, z, t) =

χσ

∞∑
n=−∞

∞∑
m=−∞

{amσAi [Zmσ(z)] + bmσBi [Zmσ(z)]}

× Jn−m

(
V1

�ω

)
e−iEσ

znt/� exp
(
i�k‖ · �ρ − iEσ

‖ t/�

)
(17)

where Ez is incident energy of the electron and Eσ
zn are

the Floquet’s spin-dependent eigen energies.

2.2 Floquet states outside the time-periodic potential
regions

Since electrons incident into the time-periodic potential
region will be scattered inelastically into an infinite num-
ber of Floquet sidebands, the Floquet states outside the
time-periodic regions (i.e. regions I and III in Fig. 1) are
the superpositions of an infinite number of plane waves
with wave vectors.
For region I

kσ
1zn =

√
2µ1

�2
(Eσ

z + n�ω) and

for region III

kσ
3zn =

√
2µ1

�2
(Eσ

z + n�ω + eFL) (18)

where is Eσ
z ∈ [0, �ω] the lowest Floquet energy of the

propagating mode. Thus the wave function in regions I
and III can be expressed as

Ψ I
σ(�ρ, z, t) = χσ

[
eikσ

1z0z−iEσ
z0t/�

+
∞∑

n=−∞
rσ
n0e

−ikσ
1znz−iEσ

znt/�

]
ei�k‖·�ρ−iE‖t/� (19)

and

Ψ III
σ (�ρ, z, t) = χσ

∞∑
n=−∞

tσn0e
ikσ

3znz−iEσ
znt/�ei�k‖·�ρ−iE‖t/�

(20)
where rσ

n0 and tσn0 are the probability amplitudes of re-
flecting and transmitting waves from the sideband 0 to
sideband n, respectively.

2.3 Conductance of the electrons and spin-polarization

Across the interfaces between different layers the wave
function Ψσ and the flux 1

µ
∂
∂z Ψσ have to be continuous.

Here the contribution to Rashba spin-orbit interaction due
to band bending is neglected, as its contribution to trans-
port is negligibly smallcompared to the contribution from
external electric field [21]. At the interface between layers
I and II, since z = 0, these conditions lead to

∞∑
m=−∞

Jn−m

(
V1

�ω

)
{amσAi [Zmσ(0)]

+bmσBi [Zmσ(0)]} = δn0 + rσ
n0, (21)

µ1

µσ

∞∑
m=−∞

Jn−m

(
V1

�ω

) {
amσ

∂

∂z
Ai [Zmσ(z)]

∣∣∣
z=0

+bmσ
∂

∂z
Bi [Zmσ(z)]

∣∣∣
z=0

}
= ikσ

1zn (δn0 + rσ
n0) . (22)
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At the interface between layers II and III, since z = L,

∞∑
m=−∞

Jn−m

(
V1

�ω

)
{amσAi [Zmσ(L)]

+bmσBi [Zmσ(L)]} = eikσ
3znLtσn0, (23)

µ1

µσ

∞∑
m=−∞

Jn−m

(
V1

�ω

) {
amσ

∂

∂z
Ai [Zmσ(z)]

∣∣∣
z=L

+bmσ
∂

∂z
Bi [Zmσ(z)]

∣∣∣
z=L

}
= ikσ

3zn

(
eikσ

3znLtσn0

)
. (24)

The continuity conditions (21–24) can be expressed in ma-
trix form:

J (CA + DB) = ∆ + R (25)
µ1

µσ
J (ΩA + ΛB) = K (∆ −R) (26)

J (GA + PB) = ST (27)
µ1

µσ
J (QA + LB) = ΓST (28)

with the square matrices defined by Cnm =
Ai [Zmσ(0)]δnm , Dnm = Bi [Zmσ(0)]δnm , Gnm =
Ai[Zmσ(L)]δnm, Pnm = Bi[Zmσ(L)]δnm, Ωnm =
∂
∂z Ai[Zmσ(z)]

∣∣∣
z=0

δnm, Λnm = ∂
∂z Bi[Zmσ(z)]

∣∣∣
z=0

δnm,

Qnm = ∂
∂z Ai[Zmσ(z)]

∣∣∣
z=L

δnm, Lnm = ∂
∂z ×

Bi[Zmσ(z)]
∣∣∣
z=L

δnm, Snm = eikσ
3znLδnm, Knm =

ikσ
1znδnm, Γnm = ikσ

3znδnm and column matrices
An = anσ, Bn = bnσ, ∆n = δn0, Rn = rσ

n0, Tn = tσ
n0.

Here R and T denote the matrices of reflection and trans-
mission amplitudes. Solving matrix equations (25–28), we
obtain the matrix of transmission amplitude:

T = 2S−1
[
(KJC + JΩ)M−1

1 M 3

+(KJD + JΛ)M−1
2 M 4

]−1
K∆ (29)

where M 1 =
[
JLP−1G − JQ

]
, M 2 =[

JQG−1P − JL
]
, M 3 =

[
JLP−1J−1 − µσ

µ1
Γ

]
, and

M 4 =
[
JQG−1J−1 − µσ

µ1
Γ

]
. The total electron

transmission probabilities of spin-up and spin-down
components are given by

T σ =
∞∑

m=0

|tσm0|2 (30)

from which the spin-polarized conductance of the electrons
through a time-periodic semiconductor heterostructures
can be obtained by the Landauer-Buttiker formula [22,23]

Gσ =
e2

h
T σ. (31)

The spin polarization efficiency of the transmitted electron
can be found from

Ps =
T +1 − T−1

T +1 + T−1
. (32)

3 Results and discussion

We have investigated the effect of a gate-controlled Rashba
spin-orbit interaction and Dresselhaus spin-orbit inter-
action on the Fano resonance and spin-polarized elec-
tron transport through a laser irradiated InP–GaSb–
InP non-magnetic semiconductor heterostructure. Laser
is irradiated and the external electric field is applied
to the quantum well region along the growth axis, so
that the electric field due laser and the external electric
field are mutually perpendicular. Spin-dependent conduc-
tance and the spin-polarization efficiency are calculated
as a function of incident electron energy and spin, us-
ing equations (31) and (32). The number of sidebands,
N , included in the calculation of transmission probability,
given in equation (30), depends on the relative strength
of the modulation amplitude of the quantum well and
the lowest energy of the propagating mode [24], such that
N > V1/�ω. The material parameters used in our calcu-
lations are γ1 = 187 eV Å3, µ = 0.041 me (me is the
rest mass of the electron) for GaSb, and γ = 8 eV Å3,
µ1 = 0.081 me for InP as given in references [7,15,16].

In our model, electrons move freely from left to right
with energy Ez0 may get ‘scattered’ by infinite number
of Floquet states, which are due to time-periodic nature
of the quantum well. Whenever the incident energy of the
electron is equal to an integer multiple of energy of one
photon, a photon-assisted transmission resonance occurs.
In our calculation of the spin-dependent conductance, we
consider a three layer heterostructure InP–GaSb–InP with
a quantum well of depth V0 = 300 meV, well width L =
60 Å, and k|| = 106 cm−1; also since γ1 � γ, we take
γ = 0.

In Figure 2 we show the Photon-assisted transmission
in the presence of external electric field without consid-
ering the spin-orbit interactions. Figures 2a and 2b show
the conductance as a function of incident energy of elec-
tron in the presence of external electric field alone. These
graphs show the resonant transmission of electrons and
that the number of bound states available for resonant
decreases as the strength of the external electric field in-
creases due to tapering of the potential well as shown in
Figure 1. Figures 2c and 2d depict conductance in the
presence of external electric field through a laser irradi-
ated heterostructure with the laser induced modulating
potential V1 = 10 meV, and �ω = 10 meV. Both of them
show the Fano-type resonances and the number of occur-
rence of Fano resonances decreases, because the number
of quasi-bound states available for resonance decreases as
the strength of the external electric field increases.

Figure 3 shows the shifting of the Fano-type resonance
peaks position towards the higher energy region as the
modulating frequency increases. It gives an additional de-
gree of freedom to control the location of resonance apart
from the parameters of the heterostructure. Figure 3b
shows two Fano resonances, around the incident energy
Ez = 5 meV and Ez = 10 meV. Since the magnitude
of the second Fano resonance is small, it may correspond
to two photon process whose probability of occurrence is
small.
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Fig. 2. Conductance as a function of Ez, in
the presence of different external electric field
but without spin-orbit interactions, for V0 =
300 meV, L = 60 Å, k|| = 106 cm−1, µ =
0.041 me, and µ1 = 0.081 me. (a) and (b)
with out laser irradiation, whereas (c) and (d)
are with laser irradiation (V1 = 10 meV, and
�ω = 10 meV). (a) and (c) in the presence of
external electric field, F = 2 × 106 V/m but
(b) and (d) with F = 5 × 106 V/m. Fano-type
resonances are shown by elliptical markings.

Fig. 3. Conductance as a function of Ez, in
the presence of external electric field, F =
106 V/m but without spin-orbit interactions, for
V0 = 300 meV, L = 60 Å, k|| = 106 cm−1,
µ = 0.041 me, and µ1 = 0.081 me. (a) with-
out laser irradiation, whereas (b), (c) and (d)
are with laser irradiation (V1 = 10 meV). (b)
for �ω = 10 meV, (c) for �ω = 15 meV, and
(d) for �ω = 20 meV. Fano-type resonances are
shown by elliptical markings. Second elliptical
marking in (b) may correspond to two photon
Fano resonance.

In Figure 4 we show the effect of external electric field
and a gate-controlled spin-orbit interaction on the spin-
dependent Fano resonance and the spin-polarized electron
transport. Figure 4a shows a set of sharp spin-dependent
Fano resonances in the absence of electric field for a range
of incident electron energy up to 20 meV, as reported in
reference [7] and the other graphs 4b, 4c, and 4d show the
effect of external electric field. These graphs show the elec-
trically tunable spin-polarized electron transport with in-
creased transmission. Figure 4d show the non-occurrence

of Fano resonance in the energy range of incident energy
below 20 meV, even though the strength of modulating
potential (V1 = 10 meV) and frequency (�ω = 10 meV)
are within this range. These graphs show that the nature
and location of the Fano-type resonance depends on the
relative strength of the electric field due to laser and the
external electric field.

Figure 5 shows the variation of Polarization efficiency
of the transmission of electrons with energy and spin of the
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Fig. 4. Conductance Gσ as a function of
Ez, in the presence of different external elec-
tric field for V0 = 300 meV, V1 = 10 meV,
L = 60 Å, k|| = 106 cm−1, �ω = 10 meV,
µ = 0.041 me, µ1 = 0.081 me, γ =
187 eV Å3, and γ1 = 0. (a) for zero-field, (b)
for F = 106 V/m, (c) for F = 5× 106 V/m,
(d) for F = 15 × 106 V/m. Fano-type reso-
nances are shown by elliptical markings. It
shows the increasing transmission probabil-
ity and the nature of Fano-type resonances
with the strength of external electric field.

Fig. 5. Variation of Polarization efficiency
of the transmission electrons with the en-
ergy and spin of the incident electron, in the
presence of external electric field. Positive
Polarization efficiency corresponds to spin-
up electrons and the negative corresponds
to spin-down electrons. (a) zero-field case
with V1 = 30 meV, (b) for F = 5×106 V/m
with V1 = 10 meV, and the other parame-
ters are the same as in Figure 4.

incident electrons. This shows the possibility of designing
a gate-controlled spin filter for the future applications of
spintronics.

4 Conclusions

We have developed the spin-dependent Floquet scatter-
ing theory of the photon-assisted spin-polarized elec-
tron transport through semiconductor heterostructures in
the presence of an external electric field. The nature of
Fano resonances and the spin-polarized electron trans-
port through a laser irradiated quantum well under ex-
ternal bias with Dresselhaus spin-orbit interaction and a
gate-controlled Rashba spin-orbit interaction are inves-
tigated using this theory. Our investigations show that
(i) the nature of Fano resonance is dependent on the rel-

ative strength of the electric field due to laser and the
external electric field; (ii) the modulating frequency gives
an additional degree of freedom to control the location
of resonance apart from the structural parameters of the
heterostructure; (iii) enhancement of spin polarization ef-
ficiency. These investigations enlighten our fundamental
understanding of photon-assisted spin-transport and its
related phenomena through non-magnetic semiconductor
heterostructure. These features could be appropriately op-
timized to design an electrically tunable spin filters.
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